
NAVAL
POSTGRADUATE

SCHOOL
MONTEREY, CALIFORNIA

THESIS
CONVOLUTIONAL NEURAL NETWORKS AS FEATURE
EXTRACTORS FOR DATA-SCARCE VISUAL SEARCHES

by

Hichem ben Abdallah

September 2016

Thesis Advisor: Mathias Kolsch
Second Reader: Magdi Kamel

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704�0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Je�erson Davis Highway, Suite 1204, Arlington, VA 22202�4302, and
to the O�ce of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

September 2016
3. REPORT TYPE AND DATES COVERED

Master’s Thesis 01-29-2016 to 09-02-2016
4. TITLE AND SUBTITLE

CONVOLUTIONAL NEURAL NETWORKS AS FEATURE EXTRACTORS FOR
DATA-SCARCE VISUAL SEARCHES

5. FUNDING NUMBERS

6. AUTHOR(S)

Hichem ben Abdallah

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

N/A
10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this document are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release. Distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Image classification is one of the core problems in Computer Vision. The classification task consists of predicting a single label from
a fixed set of categories for a single image. To perform an image classification, the classifier should consider the semantic identity of
the image rather than irrelevant characteristics and variations such as the coincidental contrast or brightness of the images or the type
of background. Applying Convolutional Neural Networks (CNNs) as feature extractors is a powerful approach to image classification.
Training these CNNs necessitates a tremendous amount of training samples, and it is costly in terms of computational time. Since it is
not guaranteed that one can find a sufficient amount of training data for a specific class target, we are conducting transfer learning of a
CNN model (learned from a large data set) to generate a new representation of the images. These representations are classified with
K-Nearest Neighbors within a target space that has just a few training samples. We aim to define the appropriate parameters including
distance metric, layer from which to extract features, and minimum number of training samples to be considered to obtain the best
classification results with our approach.

14. SUBJECT TERMS

Convolutional Neural Networks, k-Nearest Neighbors, image classification, data scarcity, transfer learning,
activation codes, high-dimensional space, cosine similarity, Euclidean distance, t-SNE

15. NUMBER OF
PAGES 83

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2�89)

Prescribed by ANSI Std. 239�18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

CONVOLUTIONAL NEURAL NETWORKS AS FEATURE EXTRACTORS FOR
DATA-SCARCE VISUAL SEARCHES

Hichem ben Abdallah
Captain, Tunisian Army

M.S., Tunisia Polytechnic School, 2013

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION TECHNOLOGYMANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
September 2016

Approved by: Mathias Kolsch
Thesis Advisor

Magdi Kamel
Second Reader

Dan C. Boger
Chair, Department of Information Sciences

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

Image classification is one of the core problems in Computer Vision. The classification task
consists of predicting a single label from a fixed set of categories for a single image. To
perform an image classification, the classifier should consider the semantic identity of the
image rather than irrelevant characteristics and variations such as the coincidental contrast
or brightness of the images or the type of background. Applying Convolutional Neural
Networks (CNNs) as feature extractors is a powerful approach to image classification.
Training these CNNs necessitates a tremendous amount of training samples, and it is costly
in terms of computational time. Since it is not guaranteed that one can find a sufficient
amount of training data for a specific class target, we are conducting transfer learning of a
CNN model (learned from a large data set) to generate a new representation of the images.
These representations are classified with K-Nearest Neighbors within a target space that has
just a few training samples. We aim to define the appropriate parameters including distance
metric, layer from which to extract features, and minimum number of training samples to
be considered to obtain the best classification results with our approach.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1

2 Background 5
2.1 Foundations . 5
2.2 Previous Works . 9

3 Methodology 11
3.1 Phase 1: Transfer Learning . 11
3.2 Phase 2: Data Visualization with t-Distributed Stochastic Neighbor Embedding 11
3.3 Phase 3: K-Nearest Neighbors Classifier 12
3.4 The Logos Dataset . 13

4 Experiments and Results 15
4.1 Experiments Environment . 15
4.2 Spatial Arrangement of the Features 15
4.3 Comparing Different Values of the Nearest-Neighbors Parameter k 21
4.4 Comparing the Two Metrics: CS and ED 23
4.5 Comparing the Two Fully Connected Layers: FC6 and FC7 25
4.6 Comparing Different Numbers of Training Samples s per Class 26

5 Conclusion 29

Appendix A Main Algorithm 33

Appendix B Numerical Results 35

Appendix C Results by Logo Classes 43

vii

List of References 61

Initial Distribution List 65

viii

List of Figures

Figure 2.1 Mathematical Model of a Neuron. 6

Figure 2.2 Fully-Connected Layers. 7

Figure 3.1 An Example of Logos Data. 13

Figure 3.2 Samples of Cropped Logos Data. 14

Figure 4.1 Spatial Arrangement of Activations at CONV1. 17

Figure 4.2 Spatial Arrangement of Activations at CONV2. 17

Figure 4.3 Spatial Arrangement of Activations at CONV3. 18

Figure 4.4 Spatial Arrangement of Activations at CONV4. 18

Figure 4.5 Spatial Arrangement of Activations at CONV5. 19

Figure 4.6 Spatial Arrangement of Activations at FC6. 19

Figure 4.7 Spatial Arrangement of Activations at FC7. 20

Figure 4.8 F-score for Different Values of k (layer=FC6, metric=ED, s=1:20). 21

Figure 4.9 F-score for Different Values of k (layer=FC6, metric=CS, s=1:20). 22

Figure 4.10 F-score for Different Values of k (layer=FC7, metric=ED, s=1:20). 23

Figure 4.11 F-score for Different Values of k (layer=FC7, metric=CS, s=1:20). 23

Figure 4.12 F-score for Different Metrics (layer=FC6, k=1, s=1:20). 24

Figure 4.13 F-score for Different Metrics (layer=FC7, k=1, s=1:20). 24

Figure 4.14 F-score for Different Layers (k=1, metric=CS, s=1:20). 25

Figure 4.15 F-score for Different Values of Training Samples per Class. . . . 26

Figure B.1 Variation of TP and FP for Different Metrics (fc6, k=1). 35

ix

Figure B.2 Variation of TP and FP for Different Metrics (fc6, k=3). 35

Figure B.3 Variation of TP and FP for Different Metrics (fc6, k=5). 36

Figure B.4 Variation of TP and FP for Different Metrics (fc7, k=1). 36

Figure B.5 Variation of TP and FP for Different Metrics (fc7, k=3). 37

Figure B.6 Variation of TP and FP for Different Metrics (fc7, k=5). 37

Figure B.7 Variation of TP and FP for Different Layers (CS, k=1). 38

Figure B.8 Variation of TP and FP for Different Layers (CS, k=3). 38

Figure B.9 Variation of TP and FP for Different Layers (CS, k=5). 39

Figure B.10 Average of TP for Different Values of k (fc6, metric=CS). 39

Figure B.11 Average of FP for Different Values of k (fc6, metric=CS). 40

Figure B.12 Sum of TP for Different Values of k (fc6, metric=CS, s=17:20). . 40

Figure B.13 Sum of FP for Different Values of k (fc6, metric=CS, s=17:20). . 41

Figure C.1 TP for the Base Logo (layer=FC6). 43

Figure C.2 TP for the Base Logo (layer=FC7). 43

Figure C.3 TP for the BFGoodrich Logo (layer=FC6). 44

Figure C.4 TP for the BFGoodrich Logo (layer=FC7). 44

Figure C.5 TP for the Bik Logo (layer=FC6). 45

Figure C.6 TP for the Bik Logo (layer=FC7). 45

Figure C.7 TP for the Bridgestone-text Logo (layer=FC6). 46

Figure C.8 TP for the Bridgestone-text Logo (layer=FC7). 46

Figure C.9 TP for the Citroen Logo (layer=FC6). 47

Figure C.10 TP for the Citroen Logo (layer=FC7). 47

Figure C.11 TP for the Citroen-text Logo (layer=FC6). 48

x

Figure C.12 TP for the Citroen-text Logo (layer=FC7). 48

Figure C.13 TP for the Dexia Logo (layer=FC6). 49

Figure C.14 TP for the Dexia Logo (layer=FC7). 49

Figure C.15 TP for the Ferrari Logo (layer=FC6). 50

Figure C.16 TP for the Ferrari Logo (layer=FC7). 50

Figure C.17 TP for the Kia Logo (layer=FC6). 51

Figure C.18 TP for the Kia Logo (layer=FC7). 51

Figure C.19 TP for the Liege Logo (layer=FC6). 52

Figure C.20 TP for the Liege Logo (layer=FC7). 52

Figure C.21 TP for the Mercedes Logo (layer=FC6). 53

Figure C.22 TP for the Mercedes Logo (layer=FC7). 53

Figure C.23 TP for the Nike Logo (layer=FC6). 54

Figure C.24 TP for the Nike Logo (layer=FC7). 54

Figure C.25 TP for the Puma Logo (layer=FC6). 55

Figure C.26 TP for the Puma Logo (layer=FC7). 55

Figure C.27 TP for the Quick Logo (layer=FC6). 56

Figure C.28 TP for the Quick Logo (layer=FC7). 56

Figure C.29 TP for the Shell Logo (layer=FC6). 57

Figure C.30 TP for the Shell Logo (layer=FC7). 57

Figure C.31 TP for the TNT Logo (layer=FC6). 58

Figure C.32 TP for the TNT Logo (layer=FC7). 58

Figure C.33 TP for the Total Logo (layer=FC6). 59

Figure C.34 TP for the Total Logo (layer=FC7). 59

Figure C.35 TP for the Umbro Logo (layer=FC6). 60

xi

Figure C.36 TP for the Umbro Logo (layer=FC7). 60

xii

List of Acronyms and Abbreviations

ANN Artificial Neural Network

BVLC Berkeley Vision and Learning Center

CNN Convolutional Neural Network

CONV Convolutional

CS Cosine Similarity

DOD Department of Defense

ED Euclidean Distance

FC Fully Connected

FN False Negative

FP False Positive

GPU Graphics Processing Unit

ILSVRC ImageNet Large Scale Visual Recognition Competition

k-NN K-Nearest Neighbor

NN Neural Network

NPS Naval Postgraduate School

PCA Principal Component Analysis

ReLU Rectified Linear Units

SVM Support Vector Machine

TP True Positive

t-SNE t-distributed Stochastic Neighbor Embedding

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

Acknowledgments

First of all, all praise and thanks are due to Almighty God for providing me with the
understanding, insight, and passion to carry out this master’s research. I would like to
express my deepest gratitude to my advisor, Dr. Mathias Kolsch, who never stopped
challenging and helpingme throughout this journey. I wish to expressmywarm appreciation
to Dr. Magdi Kamel for his intellectual comments and recommendations. I would like to
acknowledge with many thanks Tom Batcha for his generous support worthy of recognition.
I take this opportunity to express my sincere thanks to Academic Associate Glenn Cook for
his guidance and help. I am grateful to my family for their unceasing encouragement and
love. Finally, I thank everyone who directly or indirectly supported me to accomplish this
present work.

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

CHAPTER 1:
Introduction

Image classification is one of the core problems in Computer Vision. The classification task
consists of predicting a single label from a fixed set of categories for a given pixel matrix that
represents a single image. In machine learning, to classify images into different categories,
a data-driven approach is used. Instead of developing an algorithm that provides coded
definitions of the categories of interest, training examples are provided to the machine,
which learns a model representation of each class from the visual appearance.

Data driven learning can be supervised or unsupervised. In the case of supervised
learning all the samples must be labeled; however, in the case of unsupervised learning,
the samples are not labeled and learning algorithms generally try to cluster the data into
different categories by their similar features. For the supervised learning, the process of
image classification consists of input, learning, and evaluation. The input dataset, called the
training set, is a set of images labeled with one of the different output classes. The learning
phase consists of training a model that will be used to classify images. The evaluation task
refers to the quality assessment of the prediction of labels for a new set of examples, called
the test set. A good classification model results in high matching between the predictions
and the ground truth. To perform an image classification, the model should consider the
semantic identity of the image rather than irrelevant characteristics and variations such as
the coincidental contrast or brightness of the images or the type of background.

Recent improvements in infrastructure and hardware computation have enabled
computer vision researchers to enhance the techniques they are using to fulfill several
tasks like classification, object recognition, and tracking. The definition of robust image
descriptors like SIFT [1] and ORB [2] has allowed the move from controlled to arbitrary
setups. On the other hand, computer vision researchers have been moving more towards
using Convolutional Neural Networks (CNNs) to extract images’ features. Several studies
demonstrate the power of the generic descriptors extracted from CNN [3], [4].

1

Neural networks are typically arranged in multiple layers of neurons [5]. An image
vector is received by the very first layer and then transformed through a sequence of
hidden layers before reaching the output layer. At each hidden layer, there are completely
independent neurons that are connected to all neurons of the previous layer. Therefore,
to take advantage of the image nature of the input, CNNs provide a more suitable model
architecture. In fact, the neurons at each layer of a CNN are arranged in three dimensions:
width, height and depth [5]. For an image input, the depth represents the three color filters
(Red, Green, Blue). Moreover, the neurons in a layer N will only be connected to specific
neurons at nearby locations rather than being connected to all neurons in the layer N-1.

Technically, the CNN approach has three elements: (1) a score function that assigns
a calculated score to the input data, (2) a loss function that measures the consistency between
the ground truth and the predicted labels, and (3) an optimization process that minimizes the
loss function by determining the adequate set of model parameters [5]. Once the learning
is complete the training set is discarded and only the learned parameters are kept.

In practice, training a CNN from scratch is uncommon because of the scarcity of
a dataset with sufficient size. As an alternative, one can start with a CNN pretrained on
a huge dataset for parameter initialization and feature extraction. The practice of adapting
this pretrained model to a new, distinct set of classes is called Transfer Learning.

The general idea is to use large and deep neural networks to learn powerful feature
extractors for images of any content. Once learned, these feature extractors enable the
generation of new representations of the input images, which are utilized to perform the
objects’ recognition and classification tasks. CNNs are trained to perform supervised
learning [4] as well as unsupervised learning [6], [7].

The problem is that training a deep neural network model is expensive in terms of
computation resources and time and requires large amounts of data. In addition, new data
are expensive in terms of labeling costs and time. The cost issue highly restricts the amount
of data, which in turn impacts the accuracy of the classification task. Our goal is to leverage
the scarce training data in order to achieve good classification results.

2

Our approach to solve the stated problem is to make maximum use of the old data
since it is commonwithin the computer vision community to share pretrainedmodels so that
others can benefit from the released CNN weights. For example, the Berkeley Vision and
Learning Center (BVLC) released the Caffe deep learning framework [8], and shared Caffe
trained models for unrestricted use. Additionally, many huge image datasets with object
annotation such as ImageNet [9], which contains 1.2 million images for 1,000 classes, and
Pascal VOC [10] are publicly released and can help train and test CNNs.

The purpose of the present research study is to conduct transfer learning of a deep
CNNmodel learned from a large data set and reutilize this knowledge in training a classifier
for the new data that has just a few training examples. Throughout the present thesis work,
we look for answers for the following research questions:

1. How effective is the transfer learning approach to classify features of different sets of
images?

2. What would be the best layer at which to extract the CNN codes?
3. Which metric achieves better classification performance in a high dimensional space?
4. What is the effect of size of the training set on the classification results?

Our idea is to conduct transfer learning of deep CNNmodels and reutilize the former
knowledge in training a K-Nearest Neighbor (k-NN) classifier for the new data that has only
a few training samples. This thesis attempts to recommend a transfer learning method to
optimally utilize a few data samples in order to make accurate image classifications. The
present research work aims to determine which configuration is more likely to tolerate the
data scarcity while providing more accurate classification.

The advantage of this approach enables the Department of Defense (DOD) branches
to develop sophisticated classification systems to accurately identify newweapons, aircrafts,
or submarines that currently have few images. The shortage of images to train the systems
hinders the ability to identify such military equipment, but with our new approach, only a
few images are needed. This is beneficial in reducing friendly fire incidents and supporting
tactical decision making.

The thesis research is organized as follows. The first chapter gives a general
introduction to our work. The second chapter introduces the CNNs in terms of motivation

3

and architectures, and gives an overview of the extraction and transfer of features learned
from pretrained CNNs. We present some related works with respect to CNNs and transfer
learning. The third chapter presents our methodology to solve the classification problem
in the presence of scarce data. The fourth chapter provides and discusses the results of
our solution. The fifth chapter concludes our work and suggests avenues for future work.
Appendix A describes the main algorithm we use to apply our method. Appendix B
shows more outputs of our experiments in terms of number of True Positive (TP) and False
Positive (FP) instead of F-scores presented in the chapter four. Appendix C presents the
results of our experiments by target classes.

4

CHAPTER 2:
Background

2.1 Foundations

2.1.1 Convolutional Neural Networks
CNNs, introduced byLeCun et al. [11], areArtificialNeuralNetworks (ANNs) that have spe-
cific topology and specific non-linear functions. In fact, the term “Convolutional (CONV)”
indicates that CNNs use the convolution mathematical linear operation in at least one of
their layers [12]. CNN architectures hold a large number of parameters that are learned
while training the model on the training dataset [13].

2.1.1.1 Biological Motivation
Biological neural networks gave rise to ANNs that replicate the most fundamental functions
of the central nervous systems. A neuron is a basic computational unit of the central nervous
system. At each neuron, dendrites receive input signals and axons carry the produced output
signals [5]. Through the synapses, neurons connect to dendrites of another neuron, which
allows the transmission and the summation of signals. Figure 2.1 demonstrates a common
mathematical model of a neuron.

Li and Karpathy [5] describe the computational model of a neuron, in which the
signals that travel along the axon interact multiplicatively with the next neuron’s dendrites,
based on synapse strength. They further explain that the “synaptic strengths (the weights
W) are learnable and control the strength of the influence” of one neuron on another. Once
the signals are summed, the neuron fires a spike along its axon only “if the final sum is above
a certain threshold” [5]. The neuron’s firing rate is modeled with an activation function
(f) representing the frequency of the spikes along the axon. The authors indicate that the
Sigmoid function σ is a common activation function choice, which takes the sum of the
signals’ strength and normalizes it to a range between 0 and 1.

5

Figure 2.1. Mathematical Model of a Neuron.

Source: [5, Figure 1].

2.1.1.2 Neural Network Architectures
2.1.1.2.1 Layer-wise Organization

Neural Networks (NNs) are organized in a layer-wisemanner: an input layer, one or multiple
hidden layers, and an output layer [5]. NNs are modeled as graphs where the output of some
vertices (neurons here) are the inputs of others. The graph that represents an NN must be
a finite directed graph without cycles known as an acyclic graph [5]. In fact, having cycles
in the NN leads to infinite loops in both forward and backward propagation.

2.1.1.2.2 Neural Network Topologies

Commonly, NN graphs are represented by layers of neurons. Each neuron is connected
pairwise to neurons from adjacent layers yet does not share any connections with neurons
from the same layer. This topology is called Fully Connected (FC) layers, and it is shown
in Figure 2.2.

A CNN model consists of several combinations of CONV and FC layers, with
application of a nonlinearity function at the end of each layer. A common architecture of a
CNN model may consist of many stages of layers, and each stage consists of convolution,
nonlinear activation, and optionally Pooling layers. Convolutional layers produce a set of
linear activations by performing several parallel convolution operations, and then nonlinear

6

Figure 2.2. Fully-Connected Layers.

Source: [5, Figure 2].

activation functions are applied to each of the linear activations. As a result, a nonlinear
decision boundary is produced via nonlinear combinations of the weighted inputs. The
most common nonlinear activation functions are the Sigmoid and Rectified Linear Units
(ReLU) functions. An optional non-linear down-samplingmay be applied through a Pooling
function. According to Li and Karpathy [5], it is common to apply a Pooling function in
between twoCONV layers in order to decrease the spatial size of the representation, which in
turn leads to a decrease in the number of parameters and computation load in the network.
The most common Pooling functions are max Pooling, average Pooling, and L2-norm
Pooling.

2.1.1.3 Features
Instead of using hand-coded feature extractors and descriptors, recent researches use CNN
models to extract images’ features. According to Fisher et al. [14],“CNNs clearly outperform
SIFT [1] on descriptor matching.” Specific locations in the images such as structures’ peaks
or corners represent an important category of features. The description of these localized

7

features, called “key points” or “interest points,” are patches of pixels surrounding the point
locations. Important feature categories also include edge profiles, such as the silhouette of
building roofs. These features match based on their orientation and local appearance [15].

According to Yosinski et al. [16], features that look like color blobs or Gabor filters
are learned by the first layers of modern deep NNs when trained on images. These first-layer
features are called “general” as these standard features can be extracted independently from
the task and the dataset. However, last-layer features depend significantly on the task and
dataset. For instance, training a neural network for a supervised classification task with X

target classes implies an assignment of an output unit to each of the X neurons at the output
layer [16]. Therefore, these last-layer features are called “specific.” The learned features
within a network are eligible for repurposing or being transferred to a another network if
they are such “general” features [17], [18].

2.1.2 Transfer Learning

2.1.2.1 Overview
Transfer learning is an emergent learning framework based on reusing common knowledge
extracted from existing systems. In some cases, training data might only be abudant in
domains that differ from our classification task domain; or, the abundant data may follow a
different data distribution. “In such cases, knowledge transfer, if done successfully, would
greatly improve the performance of learning by avoiding much expensive data-labeling
efforts” [19] and reducing the time of building models from scratch.

2.1.2.2 Transfer Learning Scenarios
Since training a CNN on ImageNet [9] can be very time consuming, even on Graphics
Processing Unit (GPU) computing enabled hardwares, computer vision researchers release
their final CNN parameters for the benefit of others who can reuse the networks and apply
the transfer learning approach. Two major transfer learning scenarios [16] can be used:

1. Fine-tuning: having a pretrained CNN, retrain the entire network to a different task.
This end-to-end feedforward and backpropagation will allow the adjustment of the
learned weights with regards to the novel task. There are two possibles options: we

8

can either fine-tune all the layers of the CNN or fix the first layers and only fine tune
the last portion of the CNN [5].

2. Freezing the transferred layers: having a CNN pretrained on a large number of
samples, remove the last fully-connected layer, then replace it by a new classifier
(e.g., Linear Support Vector Machine (SVM) or Softmax classifier) to be trained in
the novel task on top of the CNN on the new dataset.

2.2 Previous Works
Contemporary research results demonstrate the power of the generic representations or
descriptors extracted from CNN in various visual tasks.

Donahue et al. [20] have evaluated the performance of linear classifiers, such as
SVM, on features extracted from a deep convolutional neural network trained in the fully
supervised setting. The authors demonstrated that features learned from a CNN trained
with an auxiliary large labeled dataset possess enough representational strength and gener-
alization ability to efficiently achieve semantic visual recognition. Their approach consists
of extracting various activations from different hidden layers of the deep CNN as features,
then analyzing linear classifier performance. Even though the difference between tasks is
great, initializing a CNNwith transferred features from unsimilar tasks performs better than
resetting with random weights [16].

The work of Razavian et al. [21] adds to the mounting evidence that the generic
descriptors extracted from a CNN are very powerful. Their work differs from Donahue et
al. [20] by the use of a different framework, the OverFeat convolutional neural network [22],
which was trained in order to perform object classification in the ImageNet Large Scale
Visual Recognition Competition (ILSVRC) 2013. Yet, the 4096 dimensional features
extracted from this CNN as generic representations are input to the SVM classifier to solve
different classification tasks applied to diverse sets of data. A one-against-all strategy is
applied whenever the labels are not mutually exclusive; otherwise, one-against-one linear
SVMs with voting are applied. These representations are extracted from the first fully
connected layer (layer 22) of the network and input to a linear SVM classifier or an L2
distance in case of instance retrieval. Their consistent results strongly recommend the
features extracted from deep learning of CNNs as primary candidates in most recognition

9

tasks in the computer vision field.

Our present thesis work is part of mounting evidence [20], [22]–[25] that CNNs
offer a means to learn generic descriptors transferable to several visual recognition and
classification tasks. In addition, our approach represents an extension of Donahue et al.’s
work [20] and Razavian et al.’s work [21] in the way that we still extract features learned
from a CNN trained with a large labeled dataset. Yet, we apply a different classifier, the
k-NN technique, and we investigate the best metric for assessing the similarity among the
new representations in a high dimensional space.

Li et al. [13] relied on the generic descriptors extracted from CNNs to discover mid-
level visual elements within a given dataset. They applied a data mining approach known
as pattern mining through association rule mining to find conforming patterns between new
images’ representations extracted from CNNs.

The following chapter presents our methodology to solve the problem of scarcity
of training samples while applying the transfer technique to take advantage of the powerful
features extracted from a pretrained CNN with an abundant training.

10

CHAPTER 3:
Methodology

Throughout this chapter, we describe our approach to accurately classify out-of-sample
images in the presence of few training data samples. We discuss how to transfer learned
knowledge from a CNN model trained on a large dataset to train our classifier. Our method
aims to determine the best parameters that better tolerate the data scarcity. Then, we present
the dataset to which we apply our method during the experiment phase of our thesis.

3.1 Phase 1: Transfer Learning
In our method, we consider transferring parameters learned from a CNN model trained
on a large dataset instead of training a new model from scratch. We adopt one of the
publicaly released network settings; then we feed the training samples to our network in
order to generate new representations of these images. We are not interested in learning
new features from these training samples since their number is restricted. Thus, we opt
for freezing the transferred layers by setting the learning rate at each layer of the network
at zero. Since we choose to work with the Caffe framework [8] trained on the ImageNet
dataset, our network consists of seven layers. The first five layers are CONV layers while
the two last layers are FC layers. We consider extracting the new representations, called
activations, at each layer.

3.2 Phase 2: Data Visualization with t-Distributed
Stochastic Neighbor Embedding

The next step in our method is to visualize the activations extracted at each layer. At
this phase, we are interrested in the spatial distribution of the activations. Since our
new representation is of high dimension, we apply the t-distributed Stochastic Neighbor
Embedding (t-SNE) [26] technique for dimensionality reduction to visualize our data.
The output of this technique consists of a low dimension embedding. We then plot the
mapped low dimensional data. From visual observations, we decide which layers should
be considered for further search. We are looking for how discriminative the representations

11

are at each layer.

3.3 Phase 3: K-Nearest Neighbors Classifier
The activations extracted from our network at the layers considered in the previous phase
are fed to a k-NN classifier. k-NN is an instance-based learning algorithm that stores all
training samples. Given an out-of-sample test instance, it locates a number k of closest
training samples by means of a distance function or similarity metric. If a majority of the
k training samples have the same label, this label is the prediction for the test sample. In
case of a tie, no prediction is made. In this thesis, we take advantage of the simplicity
and effectiveness of the k-NN method to classify a new image instance relying on its CNN
representation.

Furthermore, we investigate two main concerns:

1. Which metric achieves better classification performance in a high dimensional space?
2. What is the impact of the number of training instances per class with respect to the

accuracy of the k-NN classification?

Answering the first question, we compare the Cosine Similarity (CS) and Euclidean
Distance (ED) to determine the better metric for our high dimensional feature space. In
our approach, given a training set, an out-of-sample test instance, and the parameter k,
we look for the nearest neighbors for both metrics. From this list of nearest neighbors for
each metric, we predict the most likely class for the test instance with the k-NN classifier.
We compare the classification accuracy for both metrics at different layers, for different
sizes of training sets, and different numbers of nearest neighbors. Thus, we evaluate the
hyperparameter k ∈ {1,3,5} to compare the output of k-NN for different values of k. The
classification accuracy is calculated from comparing the predicted class with the expected
class.

The impact of the number s of training instances per class is addressed by evaluating
TP and FP as output of the classification task while varying the hyperparameter s. The
straightforward implementation of the design-of-experiments is described in Appendix A.
The results of our implementation tested on the logos dataset are shown and discussed in
the following chapter.

12

3.4 The Logos Dataset
Our training dataset is retrieved from the logos dataset available online at [27], [28]. The
logos dataset is composed of 10,000 images covering several domains such as sports, culture,
and personalities. The format of all images is JPEG whether they contain a logo or not.
Images are resized to 800 by 800 pixels. Figure 3.1 shows a sample from the logos dataset.

Figure 3.1. An Example of Logos Data.

Source: [27], [28].

Additional metadata for each image contains an image name, boolean that indicates
whether the image contains a logo, and the coordinates of the logo bounding-box within
this image if applicable. The location of the logo is not provided for all images.

As the number of samples differs from one class to another, from 36 ground truth
classes we keep only 19 classes having at least 50 samples each. The first step is to prepare
the data by cropping the training images based on the bounding-box coordinates provided
with the dataset. Figure 3.2 shows samples of cropped logos to be fed to the CNN to
generate new representations or activation codes at the layers FC6 and FC7.

13

Figure 3.2. Samples of Cropped Logos Data.

Adapted from [27], [28].

The logos data is split into a training set and one test sample to conduct a one-
against-all classification task. As we do a k-fold cross-validation, with 50 samples per class,
we do 50 one-against-all training and classification steps. We define the training set in an
iterative loop in such a way that we have one more sample from each class at every iteration.
This helps us determine the impact of the size of the training set and the minimun required
number of training samples to achieve a desired classification accuracy. The following
chapter provides and discusses the results we obtain by applying our described method to
the logos dataset.

14

CHAPTER 4:
Experiments and Results

In this chapter, we investigate the spatial arrangement of the high-dimensional features
extracted from different layers of our CNN by projecting them into a 2-D space. Once
we determine at which layers the features are mmore easily separable, we conduct further
experiments based on the k-NN method presented in the previous chapter. We strive to
determine the most adequate parameters, including number of nearest neighbors, distance
metric, layer from which the features will be extracted, and the number of training samples
that best handle the problem of data scarcity while providinig good classification results.

4.1 Experiments Environment
We run our experiments within the following environment:

1. Caffe framework [8],
2. GoogleNet pretrained model provided with Caffe,
3. GPU node at the High Performance Computer located at the Naval Postgraduate

School (NPS),
4. Personal laptop: Intel Core(TM) i7 2.2GHz processor and 4GB memory,
5. Platform: Anaconda 3, Jupyter Notebook,
6. Programming language: Python 3.

4.2 Spatial Arrangement of the Features
The activations extracted from the pretrained CNN are saved by classes and by layers in
different csv files. Entries of each file are high dimensional arrays. We choose randomly
four logo classes: Adidas, Puma, Ferrari, and Mercedes to visualize their activations. We
feed the activations of these four classes at each layer to the t-SNE algorithm [26]. We
import the t-SNE algorithm from the sklearn.manifold Python library. Our model is created
as follows:

15

model = TSNE(n_components=2, random_state=0, init=’pca’,perplexity=30)

This generates a 2-dimensional embedding of the high dimensional space at each layer. The
pca parameter of the model indicates that we are reducing the number of dimensions by
the Principal Component Analysis (PCA) dimensionality reduction method before applying
t-SNE technique. This helps speed up the pairwise distances computation between training
instances [26]. Then, we plot the data points at the low-dimensional embedding as colored
points based on their semantic classes.

We extract and analyze activation codes from different layers of our CNN for the
different classes. The parameters of our CNN are learned and transferred from a CNN
trained on the ImageNet dataset. We then feed our target classes to the network and extract
the activation codes at each layer. During our experiments, we freeze the model parameters
as a transfer learning option by setting the learning rate to zero for each layer.

Figures 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7 show the spatial arrangment of the
activations representing every input image extracted from the layers of the pretrained CNN.

Our main concern is to compare the dispersion of the features in 2-D space to
determine atwhich layer these representations aremore compact (low intra-cluster distances)
and discriminative (high inter-cluster distances). The results show that at early layers the
features are less discriminative and more disperse. As we move towards the last layers, the
features show less dispersionwhile the separate classes arewell discernible. Note that t-SNE
minimizes the Kullback-Leibler divergence between the distribution in the high dimension
space (that measures pairewise similarities of the input samples) and the distribution in
the low-dimensional embedding (that measures pairwise similarities of the corresponding
points) [26]. Thus, we consider the dispersion of the features evaluated at the 2-dimensional
space to reflect the dispersion of the 4096-dimensional space.

16

Figure 4.1. Spatial Arrangement of Activations at CONV1.

The scatter plot of Figure 4.1 represents the spatial arrangement and discriminabil-
ity of the activations extracted from the convolutional layer CONV1 of the CNN
pretrained on ImageNet.

Figure 4.2. Spatial Arrangement of Activations at CONV2.

The scatter plot of Figure 4.2 represents the spatial arrangement and discriminabil-
ity of the activations extracted from the convolutional layer CONV2 of the CNN
pretrained on ImageNet.

17

Figure 4.3. Spatial Arrangement of Activations at CONV3.

The scatter plot of Figure 4.3 represents the spatial arrangement and discriminabil-
ity of the activations extracted from the convolutional layer CONV3 of the CNN
pretrained on ImageNet.

Figure 4.4. Spatial Arrangement of Activations at CONV4.

The scatter plot of Figure 4.4 represents the spatial arrangement and discriminabil-
ity of the activations extracted from the convolutional layer CONV4 of the CNN
pretrained on ImageNet.

18

Figure 4.5. Spatial Arrangement of Activations at CONV5.

The scatter plot of Figure 4.5 represents the spatial arrangement and discriminabil-
ity of the activations extracted from the convolutional layer CONV5 of the CNN
pretrained on ImageNet.

Figure 4.6. Spatial Arrangement of Activations at FC6.

The scatter plot of Figure 4.6 represents the spatial arrangement and discrim-
inability of the activations extracted from the fully connected layer FC6 of the
CNN pretrained on ImageNet.

19

Figure 4.7. Spatial Arrangement of Activations at FC7.

The scatter plot of Figure 4.7 represents the spatial arrangement and discrim-
inability of the activations extracted from the fully connected layer FC7 of the
CNN pretrained on ImageNet.

Finding 4.1. From visual observation of scatter plots created with the t-SNE technique,
the fully connected layers FC6 and FC7 better represent the features’ compactness in high
dimensional space.

In the following subsections, we investigate the appropriate parameters including
nearest neighbors k, distance metric, number of training samples, and layer to extract
features from to be considered to achieve the best results from our classification approach.
The dataset for the following experiments is the logos dataset [27], [28]. The datataset
is split into a training set and one test sample extracted from one of the 19 classes. For
each iteration, we pick a test sample and keep 49 positive training samples (from the same
class) and 50*18 negative samples (from classes other than the target class). During our
experiment, we increment the number of training samples to be considered from every class
at each iteration. To assess the accuracy of our experiment results we are utilizing the F
score (or F1 score) function defined by the following formula:

20

F = 2 × precision × recall
precision + recall

(4.1)

where

Precision =
TP

TP + FP
(4.2)

Recall =
TP

TP + FalseNegative(FN) (4.3)

4.3 Comparing Different Values of the Nearest-Neighbors
Parameter k

In this section we investigate the impact of the number of nearest neighbors /k/ on the
performance of the k-NN classification task. We consider the fully connected layer FC6,
and we check the F-scores for both metrics, the CS and the ED metrics, while varying k.
Figure 4.8 shows F-score plots from experiments at layer FC6 with ED as the metric, while
Figure 4.9 presents F-score plots from experiments at the same layer but with CS as the
metric. For both figures, the x-axis represents the number of training instances s picked
from each class.

Figure 4.8. F-score for Di�erent Values of k (layer=FC6, metric=ED,
s=1:20).

21

Figure 4.9. F-score for Di�erent Values of k (layer=FC6, metric=CS,
s=1:20).

From the previous results, k=1 achieves better classification results at the FC6 layer
for both metrics, CS and ED. We replicate the same experiments at the layer FC7. We plot
the F-score plots for a different number of nearest neighbors k. Figure 4.10 shows F-score
plots from experiments at layer FC7 with ED as the metric, while Figure 4.11 presents
F-score plots from experiments at the same layer but with CS as the metric. The results at
FC7 support that k=1 is best choice for the number of nearest neighbors as found at FC6.
Note that 1-NN in general leads to overfitting since the estimation of the class is based on
the closest neighbor, which could be an outlier, mislabeled sample, or noise; yet, this not the
case for our logos dataset. In addition, 1-NN classification works very well with a dataset
with great separation between target values. Thus, we conclude that overfitting is not an
issue for the logo dataset. For the value of k, we limited our search to 1, 3, and 5 as there
seems to be a trend, worse performance with bigger k.

Finding 4.2. k-NN algorithm with k=1 gives better classification results compared to k=3
and k=5 for both metrics CS and ED at different layers FC6 and FC7 .

22

Figure 4.10. F-score for Di�erent Values of k (layer=FC7, metric=ED,
s=1:20).

Figure 4.11. F-score for Di�erent Values of k (layer=FC7, metric=CS,
s=1:20).

4.4 Comparing the Two Metrics: CS and ED
In this section we investigate which metric, CS or ED, to be applied to features in order to
find the training samples most similar to our target instance. Based on the previous finding,
we will only consider k=1 for our k-NN approach in further experiments. Starting with
FC6, we vary the number of training instances per class s (x-axis), and we plot the F-score
(Y-axis) for both metrics. We repeat the experiments for FC7. Figure 4.12 shows that the
F-score resulting from the k-NNs method with k=1 applied to the features extracted from
FC6 with the CS metric tops the F-score resulting from the same experiment but with ED
as the metric. Our hypothesis is that the CS is more appropriate than the ED as a metric for

23

our classification method based on the k-NN algorithm with k=1.

Figure 4.12. F-score for Di�erent Metrics (layer=FC6, k=1, s=1:20).

To verify our hypothesis, we run further experiments at the layer FC7 with the k-NN
algorithm for k=1. As shown in Figure 4.13, we plot the F-scores for the different metrics
ED and CS in function of the number of training samples per class s (x-axis). Note that the
F-scores presented by the Figure 4.12 and Figure 4.13 have very similar curves but we can
conclude that the cosine similarity is more appropriate for the classification task.

Figure 4.13. F-score for Di�erent Metrics (layer=FC7, k=1, s=1:20).

Finding 4.3. The CS as a metric leads to better classification than the ED metric with k-NN
for k=1 at layers FC6 and FC7 .

In the following section we investigate the best layer at which to extract our features
in order to reach better classification results.

24

4.5 Comparing the Two Fully Connected Layers: FC6
and FC7

For the following discussion, we consider k=1 for the k-NN algorithm based on finding
4.2 and the CS metric based on finding 4.3, and we investigate from which layer to extract
features. We plot the F-score at both layers FC6 and FC7. The x-axis presents the number
of training instances s picked from each class. Figure 4.14 shows that the results of
experiments based on the features extracted from FC6 outperform the ones derived from
FC7 while applying the k-NN with k=1 and the CS metric as the parameter. Note that the
curves are the same as the CS (top) curves in Figure 4.12 and Figure 4.13.

Figure 4.14. F-score for Di�erent Layers (k=1, metric=CS, s=1:20).

Finding 4.4. The fully connected layer FC6 is the best layer to extract the features from
(k=1 and metric=CS).

In the following section we investigate how many training samples per class should
be considered in order to reach a specific classification performance.

25

4.6 Comparing Different Numbers of Training Samples s
per Class

In this section we investigate the impact of the number of training samples s to be extracted
from each class on the performance of a k-NN classification task. Based on the previous
findings, we will only consider k=1, the fully connected layers FC6, and the CS metric for
further experiments. We vary the number of training instances s picked from each class,
and we record the F-score for each value of s. The results we are presenting in this section
are as expected: better F-scores are obtained when a greater number of training samples
per class is available. Moreover, the shown results are rather reliable because they are the
average for over a dozen objects (19 classes).

Figure 4.15 shows that the F-score for the particular parameters of our experiments
(k=1, metric=CS and layer= FC6) increases as the number of training samples per class s

increases.

Figure 4.15. F-score for Di�erent Values of Training Samples per Class.

26

Finding 4.5. For almost any number of training samples per class si greater than s j , we
achieve better classification results.

As a summary of our findings, we can state that the k-NN algorithm with the choice
of parameters k=1, metric= CS, and layer=FC6 achieves better classification results. These
results improve as we increase the number of training samples per class s.

27

THIS PAGE INTENTIONALLY LEFT BLANK

28

CHAPTER 5:
Conclusion

There are many challenges that arise in Computer Vision, and the classification of images is
one of the core challenges. ComputerVision researchers have been usingCNNs increasingly
as they become a more viable approach for image classification. Unfortunately, an excessive
number of training samples is needed when it comes to training CNNs, and this task is costly
and time consuming. In addition, we can often not find sufficient training data for a specific
class target; thus, it is best to reuse the knowledge that has been obtained from a previous
model trained on a large dataset through the transfer learning approach.

Throughout our thesis work, new representations of the images were generated as
we conducted a transfer learning of a deep CNNmodel. We started with a CNN trained on a
huge dataset [9]. The weights of this model were transferred to our model. In our approach,
we freeze these weights and feed training images to our model in order to generate new
presentations of these inputs called features. Our training dataset consisted of logo images
cropped from an original logo dataset publicly released [27], [28].

As we transferred the knowledge from a deep CNNmodel trained on a huge dataset,
time to build the model from start to finish has been avoided and the expense of data labeling
has been reduced. The features obtained from our scarce training data were within a high
dimensional space (e.g., 4096, if extracted from the sixth convolutional layer (CONV6)).
These features were the inputs to the k-NN algorithm in order to accomplish a classification
of out-of-sample images. Through our methodology, we sought the most appropriate
configuration to best handles the scarcity of labeled training data. We experimented with
multiple parameters, including the distance metric, the layer from which the features were
extracted, the number of nearest neighbors k to vote, and the available number of training
samples, to achieve the greatest results in classification.

29

In order to investigate the best layer of the CNN to extract features from, we started
with observing the dispersion and discrimination of the features extracted from the various
layers of the CNN by projecting them onto a 2-D plane. The t-SNE [26] technique was
chosen to visualize the high dimensional data, and the results show that the features in the
first layers appeared to be less discriminative and more spread out. The features showed
less dispersion towards the remaining last layers. Then, we focused our experiments on the
last two layers, FC6 and FC7.

To determine the best value for the hyperparameter k, the number of nearest neigh-
bors, and the best metric to be considered in high dimensional space, we ran our experiments
for different values of k (1, 3 and 5), and at each iterationwe considered two different metrics
(Euclidean distance and cosine similarity). The accuracy of our classification was evaluated
for each setting by collecting the number of True Positives (TPs), False Positives (FPs), and
False Negatives (FNs) as the output the k-NN classifier. Since we were interested mainly in
scarce data scenarios, we simulated small training datasets by choosing a specific number
s of training instances from each class. This hyperparameter s was also varied in order to
study its impact on the accuracy of the classification task.

Our final results show that the best output layer at which to extract the CNN
activations is the FC6 layer. These results can be explained by the fact that the activations
extracted from the layer FC6 are not general like those from the early layers. Furthermore,
they are not specific to the target task, unlike FC7 or any classifier used in other research.

As for the metric, we compared the Euclidean distance to the cosine similarity
in determining similar representations of images in high dimensional spaces. The cosine
similarity was able to give better results in combination with the k-NN algorithm we used
in our research, and it is more likely to be used in such a space dimension.

In regards to the effect of the size of the training set, we found that we can reach
good results by using the k-NN solution applied to the activation codes extracted from the
FC6 layer for small datasets. For instance, we achieved 90% accuracy for only 17 training
samples per class (19 classes were considered for our research), and the results improved as
we increased the number of the training samples (in our case we varied s from 1 to 20).

30

Our work supports the mounting evidence that the activations extracted from CNNs
are very efficient. Unlike previous researches we methodically evaluate the impact of the
number of training samples on classificaiton performance while applying a nonparametric
method, the k-NN classifier. Furthermore, our research helps building a detector for objects
similar to logos with few training samples for a specific level of accuracy. For example,
with 17 training samples we expect a 90% classification accuracy.

Practically, we encourage using the solution that has been proposed in this thesis
to implement sophisticated classification systems that overcome the shortage of training
images and support tactical decision making. Our work has determined the configuration
that best tolerates the lack of datawhile still being able to offer a desired level of classification
accuracy, lower costs, and less computational time.

For future work, we suggest further research and investigation of the fine-tuning
as a transfer learning scenario, instead of freezing the transferred layers, and applying our
proposed parameters including number of nearest neighbors k, themetric, and the number of
training samples. The results from this can be compared with the results we have obtained.

31

THIS PAGE INTENTIONALLY LEFT BLANK

32

APPENDIX A:
Main Algorithm

Input:
- className : dictionary of class names
- m_nic: maximum number of training instances per class

Variables:
- kn: number of nearest neighbors
- target: name of the target class
- testInstance: name of the test instance
- dicTrain: dictionary of all train instances
- trainSet: train instance for current ’testInstance’
- l: index of the ’testInstance’ within a target class
- s: number of samples to be considered from each class
- eLabels: labels of ’kn’ nearset neighbors for Euclidean distance metric
- eVote: the predicted class for a ’testInstance’ for Euclidean distance metric
- cLabels: labels of ’kn’ nearset neighbors for cosine similarity metric
- cVote: the predicted class for a ’testInstance’ cosine similarity metric

Output:
- eTP: dictionary having predicted class, kn and s as keys and number of true
positives as value for Euclidean distance metric
- eFP: dictionary having predicted class, kn and s as keys and number of false
positives as value for Euclidean distance metric
- cTP: dictionary having predicted class, kn and s as keys and number of true
positives as value for cosine similarity metric
- cFP: dictionary having predicted class, kn and s as keys and number of false
positives as value for cosine similarity metric

for varName in className do
target← varName
for kn in {1,3,5} do
for l in instances of target class do

33

testInstance← instance l
dicTrain← all_data_except_ instance_ l
for s← 1 to m_nic do
trainSet← s instances per class from dicTrain
k nearest neighbors with Euclidean distance
tree← call KDTree (training_set = trainSet and metric = Euclidean distance)
eLabels← query the tree (test_set = testInstance and k = kn)
k nearest neighbors with cosine similarity
cLabels← call ckNeighbors(training_set=trainSet, test_set=testInstance,k=kn)
eVote← call classPrediction(eLabels)
cVote← call classPrediction(cLabels)
if eVote = target then
increment value of eTP(class= eVote, k=kn , number-of-sample-per-class =s)

else
increment value of eFP(class= eVote, k=kn , number-of-sample-per-class =s)

end if
if cVote = target then
increment value of cTP(class= cVote, k=kn , number-of-sample-per-class =s)

else
increment value of cFP(class= cVote, k=kn , number-of-sample-per-class =s)

end if
end for

end for
end for

end for

34

APPENDIX B:
Numerical Results

Figure B.1. Variation of TP and FP for Di�erent Metrics (fc6, k=1).

Variation of sums of true positives (TP) and false positives (FP) as a result of the
kNN method with k=1 applied to the features extracted from the sixth layer (fc6)
for di�erent metrics: cosine similarity (CS) and Euclidean distance (ED).

Figure B.2. Variation of TP and FP for Di�erent Metrics (fc6, k=3).

Variation of sums of true positives (TP) and false positives (FP) as a result of the
kNN method with k=3 applied to the features extracted from the sixth layer (fc6)
for di�erent metrics: cosine similarity (CS) and Euclidean distance (ED).

35

Figure B.3. Variation of TP and FP for Di�erent Metrics (fc6, k=5).

Variation of sums of true positives (TP) and false positives (FP) as a result of the
kNN method with k=5 applied to the features extracted from the sixth layer (fc6)
for di�erent metrics: cosine similarity (CS) and Euclidean distance (ED).

Figure B.4. Variation of TP and FP for Di�erent Metrics (fc7, k=1).

Variation of sums of true positives (TP) and false positives (FP) as a result of
the kNN method with k=1 applied to the features extracted from the seven layer
(fc7) for di�erent metrics: cosine similarity (CS) and Euclidean distance (ED).

36

Figure B.5. Variation of TP and FP for Di�erent Metrics (fc7, k=3).

Variation of sums of true positives (TP) and false positives (FP) as a result of
the kNN method with k=3 applied to the features extracted from the seven layer
(fc7) for di�erent metrics: cosine similarity (CS) and Euclidean distance (ED). .

Figure B.6. Variation of TP and FP for Di�erent Metrics (fc7, k=5).

Variation of sums of true positives (TP) and false positives (FP) as a result of the
kNN method with k=5 applied to the features extracted from the seventh layer
(fc7) for di�erent metrics: cosine similarity (CS) and Euclidean distance (ED).

37

Figure B.7. Variation of TP and FP for Di�erent Layers (CS, k=1).

Variation of sums of true positives (TP) and false positives (FP) as a result of the
kNN method with k=1 and metric= cosine similarity (CS) applied to the features
extracted from the seventh layer (fc7) and the sixth layer (fc6).

Figure B.8. Variation of TP and FP for Di�erent Layers (CS, k=3).

Variation of sums of true positives (TP) and false positives (FP) as a result of the
kNN method with k=3 and metric= cosine similarity (CS) applied to the features
extracted from the seventh layer (fc7) and the sixth layer (fc6).

38

Figure B.9. Variation of TP and FP for Di�erent Layers (CS, k=5).

Variation of sums of true positives (TP) and false positives (FP) as a result of the
kNN method with k=5 and metric= cosine similarity (CS) applied to the features
extracted from the seventh layer (fc7) and the sixth layer (fc6).

Figure B.10. Average of TP for Di�erent Values of k (fc6, metric=CS).

Positive correlation between the number of training instances s (x-axis) picked
from each class and the average of true positives (TP) for di�erent values of k.
The cosine similarity (CS) metric is applied to features extracted from the sixth
layer (fc6). A 90% accuracy in terms of TPs is achieved for s equal or greater
than 17 instances per class.

39

Figure B.11. Average of FP for Di�erent Values of k (fc6, metric=CS).

Negative correlation between the number of training instances s (x-axis) picked
from each class and the average of false positives (FP) for di�erent values of "k".
The cosine similarity (CS) metric is applied to features extracted from the sixth
layer (fc6). For s equal or greater than 17, we have less than 10% inaccuracy in
terms of FPs

Figure B.12. Sum of TP for Di�erent Values of k (fc6, metric=CS, s=17:20).

Positive correlation between the number of training instances "s" (x-axis) picked
from each class and the number of true positives (TP).

40

Figure B.13. Sum of FP for Di�erent Values of k (fc6, metric=CS, s=17:20).

Negative correlation between the number of training instances "s" (x-axis) picked
from each class and the number of false positives (FP).

41

THIS PAGE INTENTIONALLY LEFT BLANK

42

APPENDIX C:
Results by Logo Classes

Figure C.1. TP for the Base Logo (layer=FC6).

The The x-axis represents the number of samples s per class while the y-axis
represents number of TPs out of 50 attempts of the classi�cation task at layer
FC6. From left to right, these graphs represent results for test samples from the
Base class for k=1, k=3, and k=5.

Figure C.2. TP for the Base Logo (layer=FC7).

The The x-axis represents the number of samples s per class while y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC7. From
left to right, these graphs represent results for test samples from the Base class
for k=1, k=3, and k=5.

43

Figure C.3. TP for the BFGoodrich Logo (layer=FC6).

The x-axis represents the number of samples s per class while the y-axis represents
the number of TPs out of 50 attempts of the classi�cation task at layer FC6. From
left to right, these graphs represent results for test samples from the BFGoodrich
class for k=1, k=3, and k=5.

Figure C.4. TP for the BFGoodrich Logo (layer=FC7).

The x-axis represents the number of samples s per class while the y-axis represents
the number of TPs out of 50 attempts of the classi�cation task at layer FC7. From
left to right, these graphs represent results for test samples from the BFGoodrich
class for k=1, k=3, and k=5.

44

Figure C.5. TP for the Bik Logo (layer=FC6).

The x-axis represents the number of samples s per class while the y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC6. From
left to right, these graphs represent results for test samples from the Bik class for
k=1, k=3, and k=5.

Figure C.6. TP for the Bik Logo (layer=FC7).

The x-axis represents the number of samples s per class while the y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC7. From
left to right, these graphs represent results for test samples from the Bik class for
k=1, k=3, and k=5.

45

Figure C.7. TP for the Bridgestone-text Logo (layer=FC6).

The x-axis represents the number of samples s per class while the y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC6. From left
to right, these graphs represent results for test samples from the Bridgestone-text
class for k=1, k=3, and k=5.

Figure C.8. TP for the Bridgestone-text Logo (layer=FC7).

The x-axis represents the number of samples s per class while the y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC7. From left
to right, these graphs represent results for test samples from the Bridgestone-text
class for k=1, k=3, and k=5.

46

Figure C.9. TP for the Citroen Logo (layer=FC6).

The The x-axis represents the number of samples s per class while the y-axis
represents number of TPs out of 50 attempts of the classi�cation task at layer
FC6. From left to right, these graphs represent results for test samples from the
Citroen class for k=1, k=3, and k=5.

Figure C.10. TP for the Citroen Logo (layer=FC7).

The The x-axis represents the number of samples s per class while the y-axis
represents number of TPs out of 50 attempts of the classi�cation task at layer
FC7. From left to right, these graphs represent results for test samples from the
Citroen class for k=1, k=3, and k=5.

47

Figure C.11. TP for the Citroen-text Logo (layer=FC6).

The The x-axis represents the number of samples s per class while the y-axis
represents number of TPs out of 50 attempts of the classi�cation task at layer
FC6. From left to right, these graphs represent results for test samples from the
Citroen-text class for k=1, k=3, and k=5.

Figure C.12. TP for the Citroen-text Logo (layer=FC7).

The The x-axis represents the number of samples s per class while the y-axis
represents number of TPs out of 50 attempts of the classi�cation task at layer
FC7. From left to right, these graphs represent results for test samples from the
Citroen-text class for k=1, k=3, and k=5.

48

Figure C.13. TP for the Dexia Logo (layer=FC6).

The x-axis represents the number of samples s per class while y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC6. From
left to right, these graphs represent results for test samples from the Dexia class
for k=1, k=3, and k=5.

Figure C.14. TP for the Dexia Logo (layer=FC7).

The x-axis represents the number of samples s per class while y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC7. From
left to right, these graphs represent results for test samples from the Dexia class
for k=1, k=3, and k=5.

49

Figure C.15. TP for the Ferrari Logo (layer=FC6).

The x-axis represents the number of samples s per class while y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC6. From
left to right, these graphs represent results for test samples from the Ferrari class
for k=1, k=3, and k=5.

Figure C.16. TP for the Ferrari Logo (layer=FC7).

The x-axis represents the number of samples s per class while y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC7. From
left to right, these graphs represent results for test samples from the Ferrari class
for k=1, k=3, and k=5.

50

Figure C.17. TP for the Kia Logo (layer=FC6).

The x-axis represents the number of samples s per class while y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC6. From
left to right, these graphs represent results for test samples from the Kia class for
k=1, k=3, and k=5.

Figure C.18. TP for the Kia Logo (layer=FC7).

The x-axis represents the number of samples s per class while y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC7. From
left to right, these graphs represent results for test samples from the Kia class for
k=1, k=3, and k=5.

51

Figure C.19. TP for the Liege Logo (layer=FC6).

The x-axis represents the number of samples s per class while y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC6. From
left to right, these graphs represent results for test samples from the Liege class
for k=1, k=3, and k=5.

Figure C.20. TP for the Liege Logo (layer=FC7).

The x-axis represents the number of samples s per class while y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC7. From
left to right, these graphs represent results for test samples from the Liege class
for k=1, k=3, and k=5.

52

Figure C.21. TP for the Mercedes Logo (layer=FC6).

The x-axis represents the number of samples s per class while y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC6. From
left to right, these graphs represent results for test samples from the Mercedes
class for k=1, k=3, and k=5.

Figure C.22. TP for the Mercedes Logo (layer=FC7).

The x-axis represents the number of samples s per class while y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC7. From
left to right, these graphs represent results for test samples from the Mercedes
class for k=1, k=3, and k=5.

53

Figure C.23. TP for the Nike Logo (layer=FC6).

The x-axis represents the number of samples s per class while y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC6. From
left to right, these graphs represent results for test samples from the Nike class for
k=1, k=3, and k=5.

Figure C.24. TP for the Nike Logo (layer=FC7).

The x-axis represents the number of samples s per class while y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC7. From
left to right, these graphs represent results for test samples from the Nike class for
k=1, k=3, and k=5.

54

Figure C.25. TP for the Puma Logo (layer=FC6).

The x-axis represents the number of samples s per class while y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC6. From
left to right, these graphs represent results for test samples from the Puma class
for k=1, k=3, and k=5.

Figure C.26. TP for the Puma Logo (layer=FC7).

The x-axis represents the number of samples s per class while y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC7. From
left to right, these graphs represent results for test samples from the Puma class
for k=1, k=3, and k=5.

55

Figure C.27. TP for the Quick Logo (layer=FC6).

The x-axis represents the number of samples s per class while y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC6. From
left to right, these graphs represent results for test samples from the Quick class
for k=1, k=3, and k=5.

Figure C.28. TP for the Quick Logo (layer=FC7).

The x-axis represents the number of samples s per class while y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC7. From
left to right, these graphs represent results for test samples from the Quick class
for k=1, k=3, and k=5.

56

Figure C.29. TP for the Shell Logo (layer=FC6).

The x-axis represents the number of samples s per class while y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC6. From
left to right, these graphs represent results for test samples from the Shell class
for k=1, k=3, and k=5.

Figure C.30. TP for the Shell Logo (layer=FC7).

The x-axis represents the number of samples s per class while y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC7. From
left to right, these graphs represent results for test samples from the Shell class
for k=1, k=3, and k=5.

57

Figure C.31. TP for the TNT Logo (layer=FC6).

The x-axis represents the number of samples s per class while y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC6. From
left to right, these graphs represent results for test samples from the TNT class
for k=1, k=3 and k=5.

Figure C.32. TP for the TNT Logo (layer=FC7).

The x-axis represents the number of samples s per class while y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC7. From
left to right, these graphs represent results for test samples from the TNT class
for k=1, k=3, and k=5.

58

Figure C.33. TP for the Total Logo (layer=FC6).

The x-axis represents the number of samples s per class while y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC6. From
left to right, these graphs represent results for test samples from the Total class
for k=1, k=3, and k=5.

Figure C.34. TP for the Total Logo (layer=FC7).

The x-axis represents the number of samples s per class while y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC7. From
left to right, these graphs represent results for test samples from the Total class
for k=1, k=3, and k=5.

59

Figure C.35. TP for the Umbro Logo (layer=FC6).

The x-axis represents the number of samples s per class while y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC6. From
left to right, these graphs represent results for test samples from the Umbro class
for k=1, k=3, and k=5.

Figure C.36. TP for the Umbro Logo (layer=FC7).

The x-axis represents the number of samples s per class while y-axis represents
number of TPs out of 50 attempts of the classi�cation task at layer FC7. From
left to right, these graphs represent results for test samples from the Umbro class
for k=1, k=3, and k=5.

60

List of References

[1] D. G. Lowe, “Distinctive image features from scale invariant keypoints,” Interna-
tional Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[2] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An efficient alterna-
tive to SIFT or SURF,” in 2001 IEEE International Conference on Computer Vision
(ICCV). IEEE, 2011, pp. 2564–2571.

[3] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best practices for convolutional neural
networks applied to visual document analysis,” in ICDAR, 2003, vol. 3, pp. 958–962.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing Sys-
tems, 2012, pp. 1097–1105.

[5] F.-F. Li and A. Karpathy. (2015). Convolutional Neural Networks for Visual Recog-
nition. [Online]. Available: http://cs231n.github.io/convolutional-networks

[6] Q. V. Le, A. Karpenko, J. Ngiam, and A. Y. Ng, “ICA with reconstruction cost for
efficient overcomplete feature learning,” in Advances in Neural Information Process-
ing Systems, 2011, pp. 1017–1025.

[7] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep belief net-
works for scalable unsupervised learning of hierarchical representations,” in Pro-
ceedings of the 26th Annual International Conference on Machine Learning. ACM,
2009, pp. 609–616.

[8] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in
Proceedings of the 22nd ACM international conference on Multimedia. ACM, 2014,
pp. 675–678.

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE, 2009, pp. 248–255.

[10] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The pas-
cal visual object classes (voc) challenge,” International Journal of Computer Vision,
vol. 88, no. 2, pp. 303–338, 2010.

[11] Y. LeCun, “Generalization and network design strategies,” Connectionism in Per-
spective, pp. 143–155, 1989.

61

http://cs231n. github. io/convolutional-networks

[12] I. G. Y. Bengio and A. Courville, “Deep learning,” 2016, book in preparation for
MIT Press. Available: http://www.deeplearningbook.org

[13] Y. Li, L. Liu, C. Shen, and A. van den Hengel, “Mid-level deep pattern mining,” in
2015 IEEE International Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, 2015, pp. 971–980.

[14] P. Fischer, A. Dosovitskiy, and T. Brox, “Descriptor matching with convolutional
neural networks: a comparison to sift,” arXiv preprint arXiv:1405.5769, 2014.

[15] R. Szeliski, Computer Vision: Algorithms and Applications. Berlin, Germany:
Springer Science & Business Media, 2010.

[16] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in
deep neural networks?” in Advances in Neural Information Processing Systems,
2014, pp. 3320–3328.

[17] Y. Bengio, “Deep learning of representations for unsupervised and transfer learn-
ing,” ICML Unsupervised and Transfer Learning, vol. 27, pp. 17–36, 2012.

[18] Y. Bengio, F. Bastien, A. Bergeron, N. Boulanger-Lewandowski, T. M. Breuel,
Y. Chherawala, M. Cisse, M. Côté, D. Erhan, J. Eustache et al., “Deep learners bene-
fit more from out-of-distribution examples,” in AISTATS, 2011, pp. 164–172.

[19] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on
Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[20] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell, “De-
caf: A deep convolutional activation feature for generic visual recognition,” arXiv
preprint arXiv:1310.1531, 2013.

[21] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN features off-
the-shelf: An astounding baseline for recognition,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition Workshops, 2014, pp. 806–
813.

[22] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Overfeat:
Integrated recognition, localization and detection using convolutional networks,”
arXiv preprint arXiv:1312.6229, 2013.

[23] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and transferring mid-level
image representations using convolutional neural networks,” in 2014 IEEE Interna-
tional Conference on Computer Vision and Pattern Recognition (CVPR), June 2014.

62

http://www.deeplearningbook.org

[24] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accu-
rate object detection and semantic segmentation,” in 2014 IEEE International Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 580–587.

[25] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional net-
works,” in 2014 European Conference on Computer Vision. Springer, 2014, pp. 818–
833.

[26] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of Machine
Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[27] A. Joly and O. Buisson, “Logo retrieval with a contrario visual query expansion,”
in Proceedings of the 17th ACM International Conference on Multimedia, 2009, pp.
581–584.

[28] P. Letessier, O. Buisson, and A. Joly, “Scalable mining of small visual objects,” in
Proceedings of the 20th ACM International Conference on Multimedia. ACM, 2012,
pp. 599–608.

63

THIS PAGE INTENTIONALLY LEFT BLANK

64

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

65

	Introduction
	Background
	 Foundations
	 Previous Works

	Methodology
	 Phase 1: Transfer Learning
	 Phase 2: Data Visualization with t-Distributed Stochastic Neighbor Embedding
	 Phase 3: K-Nearest Neighbors Classifier
	 The Logos Dataset

	Experiments and Results
	 Experiments Environment
	 Spatial Arrangement of the Features
	 Comparing Different Values of the Nearest-Neighbors Parameter k
	 Comparing the Two Metrics: CS and ED
	 Comparing the Two Fully Connected Layers: FC6 and FC7
	 Comparing Different Numbers of Training Samples s per Class

	Conclusion
	Main Algorithm
	Numerical Results
	Results by Logo Classes
	List of References
	Initial Distribution List

